Skip to main content

AAV Gene Therapy: Vector Shedding In Clinical Studies

Vector shedding refers to the release or shedding of viral vectors from cells transduced with the vectors. AAV (adeno-associated virus) is a commonly used viral vector in gene therapy. Studying its fate after the administration to the clinical trial subjects is critical to understanding the shedding route and the duration. Although AAVs are noninfectious, replication incompetent and do not propagate outside the cells, understanding the route and duration of the shedding would enable the mitigation of any potential risk of viral vectors including:

  • spread of AAV vectors beyond treated subjects/patients (both horizontal and vertical transfer)
  • deleterious effects on persons other than the study subjects.

Method for Evaluation of Vector Shedding and Clearance (Duration)

Vector DNA biodistribution is assessed by qPCR in blood and vector DNA shedding was assessed by qPCR in semen, saliva, urine, and stool. The biodistribution and shedding of potentially infectious vector DNA may be further characterized in plasma and semen by evaluating concentrations of encapsidated vector DNA using immunoprecipitation-coupled qPCR (iqPCR). 

Vector Clearance (Duration): 
The maximum time to achieve vector DNA clearance, evaluated by qPCR assay, defined as 3 consecutive BLQ samples, in blood, saliva, semen, and stool is observed.




The biodistribution of vector DNA in blood was further characterized through qPCR analysis of PBMC, RBC and plasma fractions of whole blood. The contiguity and structural characteristics of vector DNA in whole blood and PBMCs were further evaluated using droplet digital PCR (ddPCR) methods

Popular posts from this blog

Human Gene Therapy for Neurodegenerative Diseases: FDA Guidance Summary

  Neurodegenerative diseases are a diverse group of disorders characterized by the progressive degeneration of the central or peripheral nervous system, and they can have various causes and clinical characteristics. This guidance document is a resource for sponsors on different aspects of product development, preclinical testing, and clinical trial design. It acknowledges the unique challenges and considerations associated with developing GT products for such complex and varied diseases. Below are the key summaries from the guidance. CONSIDERATIONS FOR CHEMISTRY, MANUFACTURING AND CONTROLS (CMC) The considerations for Chemistry, Manufacturing, and Controls (CMC) when developing gene therapy (GT) products for the treatment of neurodegenerative diseases are crucial for ensuring the safety and efficacy of these advanced therapies. Here, we will elaborate on the specific CMC considerations outlined in your text: Route of Administration and Product Volume: Neurodegenerative diseases often r

Human Genome Editing: FDA Draft Guidance Summary

Consideration for Developing Gene Editing Product  1. Genome Editing Methods: Genome editing can be achieved through nuclease-dependent or nuclease-independent methods. Nuclease-dependent methods involve introducing site-specific breaks in DNA using technologies like zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), modified-homing endonucleases, and CRISPR-associated (Cas) nucleases. These breaks can lead to modification of the DNA sequence at the cleavage site. Nuclease-independent methods can change DNA sequences without cleaving the DNA and include techniques like base editing and synthetic triplex-forming peptide nucleic acids. The choice of GE technology should consider factors such as the mechanism of action, the ability to target specific DNA sequences, and the potential to optimize components for efficiency, specificity, or stability. 2. Type and Degree of Genomic Modification: Different GE approaches rely on DNA repair pathways such as ho

SOP on Investigational New Drug (IND) Application and Clinical Investigation Policy

Title: Investigational New Drug (IND) Application and Clinical Investigation Policy Introduction and Purpose: The conduct of clinical investigations (clinical trials) under an FDA-Regulated Investigational New Drug (IND) application involves compliance with a complex set of FDA regulations, requirements, and responsibilities. The FDA holds the IND application sponsor accountable for ensuring compliance with these regulations (21 CFR Part 312, Subpart D). While pharmaceutical companies are typical IND sponsors, individuals, governmental agencies, and academic institutions may also serve as sponsors (21 CFR Part 312.3). This policy serves the following purposes: To assist in determining when an IND is necessary. To provide guidance and resources for individuals conducting clinical investigations, including sponsor-investigators, on obtaining an IND for the investigational drug. To outline the process for compassionate use (expanded access) and emergency use of investigational drugs. Defi

Engineering AAV vectors for enhanced safety profiles

 Engineering AAV vectors for enhanced safety profiles involves multiple strategies at both the vector genome and capsid levels. Here is a breakdown of these strategies: Vector Genome Level: Modifying Vector Genome Sequences: Scientists modify AAV vector genomes by adding, mutating, or deleting specific sequences. For example, self-complementary AAV (scAAV) vectors are designed by deleting key signals from the second inverted terminal repeat (ITR), allowing for more efficient genome replication. Codon Optimization: Optimizing the codon usage of the transgene can enhance its expression efficiency. Promoter and PolyA Sequence Selection: Careful selection and manipulation of promoter and polyadenylation (polyA) sequences can influence transgene expression and tissue specificity. Capsid Engineering: Capsid engineering strategies can be categorized into four main categories: Directed Evolution: This approach involves creating capsid mutant libraries using error-prone PCR or introducing pepti

SOP on Safety Events Reporting In Clinical Trials

Title: Standard Operating Procedure for Collection, Evaluation, Documentation, and Reporting of Safety Events in Clinical Trials Introduction and Purpose The assessment of safety events and the accurate reporting of these events are fundamental aspects of conducting clinical trials. These processes are crucial for ensuring the safety and well-being of research participants. This Standard Operating Procedure (SOP) outlines the procedures for collecting, evaluating, documenting, and reporting safety events, including Adverse Events (AE), Serious Adverse Events (SAE), Unanticipated Problems (UP), and other relevant safety events during the course of a clinical trial. The Principal Investigator (PI) holds the primary responsibility for the overall conduct of the trial, safeguarding the rights, safety, and welfare of study subjects, and ensuring that the investigation adheres to the protocol, Good Clinical Practice (GCP), Institutional Review Board (IRB), Food and Drug Administration (FDA),