Skip to main content

FDA Guidance on Studying Multiple Versions of Cellular or Gene Therapy Products in Early-Phase Clinical Trials

 The purpose of this guidance is to offer advice to sponsors interested in conducting early-phase clinical trials for a single disease involving multiple variations of a cellular or gene therapy product. Sponsors aim to gather preliminary safety and efficacy data for these product variations within a single clinical trial. It's important to note that even though multiple product versions are studied together, each version is distinct and typically requires a separate investigational new drug application (IND) submission to the FDA.

The primary goal of these early-phase clinical studies is to inform decisions about which product version(s) should be advanced for further development in later-phase trials. As such, these studies are not designed to provide the main evidence of effectiveness needed for a marketing application. They are generally not statistically powered to demonstrate a significant difference in efficacy between the different study arms.

In this guidance, the FDA provides recommendations for the conduct of studies involving multiple versions of cellular or gene therapy products. This includes guidance on how to structure and manage the INDs, submit new data, and report adverse events.



Key points in the guidance include:

IND Organization: Sponsors should submit separate INDs for each product version in the study. One IND is designated as the "Primary," including clinical and Chemistry, Manufacturing, and Controls (CMC) and Pharmacology/Toxicology (P/T) information for one product. Others are "Secondary" INDs, including CMC and P/T data for other products. Cross-referencing is encouraged to minimize redundant information submission.


Adding Study Arms: When adding arms to the study, especially those involving new product versions, sponsors should submit new Secondary INDs with relevant information and amend the Primary IND to incorporate these changes. Cross-references ensure consistency.


Submitting Changes: For changes to the clinical protocol that don't introduce new arms and for new clinical information, submit these updates to the Primary IND only. New CMC or P/T information specific to one product should be submitted to the corresponding IND(s).


Clinical Holds: If a clinical hold is issued for one arm or for the entire study, responses should be submitted to the relevant IND(s). Detailed responses don't need to be duplicated across multiple INDs, promoting efficiency.


Reporting: Safety reports must be submitted to all relevant INDs. Annual reports can be integrated and submitted to the Primary IND, with cross-references in Secondary INDs.


Study Completion or Changes: If a product is discontinued from the study, the Primary IND should not be withdrawn but updated. If the Primary IND is withdrawn, a new Primary IND should be designated. When transitioning to later-phase studies, submit protocols and updates accordingly.


Alternative Approaches: The guidance acknowledges alternative approaches for organizing INDs but advises sponsors to engage with the FDA for regulatory guidance and adhere to regulatory requirements.

Studying Multiple Versions of a Cellular or Gene Therapy Product in an Early-Phase Clinical Trial 

https://www.fda.gov/media/152536/download

Popular posts from this blog

Human Gene Therapy for Neurodegenerative Diseases: FDA Guidance Summary

  Neurodegenerative diseases are a diverse group of disorders characterized by the progressive degeneration of the central or peripheral nervous system, and they can have various causes and clinical characteristics. This guidance document is a resource for sponsors on different aspects of product development, preclinical testing, and clinical trial design. It acknowledges the unique challenges and considerations associated with developing GT products for such complex and varied diseases. Below are the key summaries from the guidance. CONSIDERATIONS FOR CHEMISTRY, MANUFACTURING AND CONTROLS (CMC) The considerations for Chemistry, Manufacturing, and Controls (CMC) when developing gene therapy (GT) products for the treatment of neurodegenerative diseases are crucial for ensuring the safety and efficacy of these advanced therapies. Here, we will elaborate on the specific CMC considerations outlined in your text: Route of Administration and Product Volume: Neurodegenerative diseases often r

Human Genome Editing: FDA Draft Guidance Summary

Consideration for Developing Gene Editing Product  1. Genome Editing Methods: Genome editing can be achieved through nuclease-dependent or nuclease-independent methods. Nuclease-dependent methods involve introducing site-specific breaks in DNA using technologies like zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), modified-homing endonucleases, and CRISPR-associated (Cas) nucleases. These breaks can lead to modification of the DNA sequence at the cleavage site. Nuclease-independent methods can change DNA sequences without cleaving the DNA and include techniques like base editing and synthetic triplex-forming peptide nucleic acids. The choice of GE technology should consider factors such as the mechanism of action, the ability to target specific DNA sequences, and the potential to optimize components for efficiency, specificity, or stability. 2. Type and Degree of Genomic Modification: Different GE approaches rely on DNA repair pathways such as ho

SOP on Investigational New Drug (IND) Application and Clinical Investigation Policy

Title: Investigational New Drug (IND) Application and Clinical Investigation Policy Introduction and Purpose: The conduct of clinical investigations (clinical trials) under an FDA-Regulated Investigational New Drug (IND) application involves compliance with a complex set of FDA regulations, requirements, and responsibilities. The FDA holds the IND application sponsor accountable for ensuring compliance with these regulations (21 CFR Part 312, Subpart D). While pharmaceutical companies are typical IND sponsors, individuals, governmental agencies, and academic institutions may also serve as sponsors (21 CFR Part 312.3). This policy serves the following purposes: To assist in determining when an IND is necessary. To provide guidance and resources for individuals conducting clinical investigations, including sponsor-investigators, on obtaining an IND for the investigational drug. To outline the process for compassionate use (expanded access) and emergency use of investigational drugs. Defi

Engineering AAV vectors for enhanced safety profiles

 Engineering AAV vectors for enhanced safety profiles involves multiple strategies at both the vector genome and capsid levels. Here is a breakdown of these strategies: Vector Genome Level: Modifying Vector Genome Sequences: Scientists modify AAV vector genomes by adding, mutating, or deleting specific sequences. For example, self-complementary AAV (scAAV) vectors are designed by deleting key signals from the second inverted terminal repeat (ITR), allowing for more efficient genome replication. Codon Optimization: Optimizing the codon usage of the transgene can enhance its expression efficiency. Promoter and PolyA Sequence Selection: Careful selection and manipulation of promoter and polyadenylation (polyA) sequences can influence transgene expression and tissue specificity. Capsid Engineering: Capsid engineering strategies can be categorized into four main categories: Directed Evolution: This approach involves creating capsid mutant libraries using error-prone PCR or introducing pepti

SOP on Safety Events Reporting In Clinical Trials

Title: Standard Operating Procedure for Collection, Evaluation, Documentation, and Reporting of Safety Events in Clinical Trials Introduction and Purpose The assessment of safety events and the accurate reporting of these events are fundamental aspects of conducting clinical trials. These processes are crucial for ensuring the safety and well-being of research participants. This Standard Operating Procedure (SOP) outlines the procedures for collecting, evaluating, documenting, and reporting safety events, including Adverse Events (AE), Serious Adverse Events (SAE), Unanticipated Problems (UP), and other relevant safety events during the course of a clinical trial. The Principal Investigator (PI) holds the primary responsibility for the overall conduct of the trial, safeguarding the rights, safety, and welfare of study subjects, and ensuring that the investigation adheres to the protocol, Good Clinical Practice (GCP), Institutional Review Board (IRB), Food and Drug Administration (FDA),