Skip to main content

ICH Topic Q5E Comparability of biotechnological/biological products (CPMP/ICH/5721/03)

 ICH Topic Q5E, as outlined in document CPMP/ICH/5721/03, deals with the comparability of biotechnological and biological products. This guideline provides a structured framework for assessing and ensuring the comparability of different product versions, including changes during development, manufacturing, or post-approval phases. The goal is to demonstrate that changes made to a product do not adversely affect its quality, safety, or efficacy. Here's an elaboration of ICH Q5E:


1. Purpose of ICH Q5E:

The primary purpose of ICH Q5E is to provide guidance on how to demonstrate the comparability of biotechnological and biological products, especially when changes are made to the manufacturing process or product characteristics. Comparability studies are crucial for ensuring the consistent quality and safety of these products.

2. Types of Changes Covered:

ICH Q5E covers a wide range of changes, including modifications to the manufacturing process, changes in the manufacturing site, alterations to the product formulation, and adjustments to the analytical methods used for product characterization.

3. Risk Assessment:

Before initiating comparability studies, a risk assessment should be conducted to identify potential risks associated with the proposed changes. The assessment should consider the impact of changes on product quality, safety, and efficacy.

4. Scientific Rationale:

A sound scientific rationale for the proposed changes is a key requirement. Manufacturers should provide a justification for why the changes are necessary and how they are expected to impact the product.

5. Analytical Characterization:

The guideline emphasizes the importance of comprehensive analytical characterization. The product before and after the proposed changes should be thoroughly analyzed to identify any differences in critical quality attributes (CQAs).

6. Comparability Protocols:

Comparability protocols should be developed to outline the strategy for the assessment. These protocols detail the study design, analytical methods, acceptance criteria, and statistical approaches used to evaluate comparability.

7. Extent of Comparability Testing:

The extent of comparability testing depends on the nature of the changes and the level of risk identified. It may include in vitro and in vivo studies, physicochemical analysis, and functional assays.

8. Stability Studies:

Stability studies are important for assessing the impact of changes on the product's shelf life and stability profile. The shelf life of the modified product should be supported by appropriate data.

9. Regulatory Considerations:

Manufacturers are encouraged to consult with regulatory authorities early in the process to discuss proposed changes and comparability study designs. Regulatory agencies play a role in reviewing and approving comparability assessments.

10. Post-Approval Changes:

- ICH Q5E also addresses post-approval changes. Manufacturers are required to notify regulatory authorities of certain changes and may need to perform comparability studies to support these changes.

11. Reporting and Documentation:

- Comprehensive documentation is crucial. Manufacturers must provide a detailed report summarizing the comparability study results, including any changes in CQAs, and demonstrate that the product remains safe and effective.


In summary, ICH Q5E provides a structured approach for assessing and ensuring the comparability of biotechnological and biological products when changes are made to their manufacturing processes or product characteristics. The guideline emphasizes the importance of scientific rationale, risk assessment, thorough analytical characterization, and rigorous comparability testing. Compliance with these guidelines is essential to maintain product quality and safety while allowing for necessary product improvements and changes

Popular posts from this blog

Ago2 Immunoprecipitation for RISC-siRNA Quantitation

 Ago2 (Argonaute 2) immunoprecipitation (IP) is a technique used to isolate RNA-induced silencing complexes (RISC) from cell lysates. This method allows for the specific enrichment of active RISC complexes bound to small interfering RNA (siRNA) or microRNA (miRNA) within cells. By isolating these complexes, researchers can then quantify the siRNA associated with Ago2, which is an essential step in determining the efficacy of RISC loading and siRNA activity. Here’s a detailed overview of how Ago2 immunoprecipitation is performed for RISC-siRNA quantitation: Steps in Ago2 Immunoprecipitation for RISC-siRNA Quantitation Cell Lysis and Preparation of Lysate : Sample Preparation : Collect cells that have been treated with siRNA, then wash them with cold phosphate-buffered saline (PBS) to remove extracellular contaminants. Lysis : Lyse the cells in a gentle, RNA-preserving lysis buffer that typically includes detergents (e.g., NP-40 or Triton X-100), protease inhibitors, and RNase inhibi...

Guideline on development and manufacture of lentiviral vectors (CHMP/BWP/2458/03)

The guideline with the reference number "CHMP/BWP/2458/03" pertains to the "Guideline on Development and Manufacture of Lentiviral Vectors." This guideline was developed by the Committee for Medicinal Products for Human Use (CHMP) and the Biotechnology Working Party (BWP) of the European Medicines Agency (EMA). It provides recommendations and regulatory guidance for the development and manufacture of lentiviral vectors, which are widely used in gene therapy and cell therapy applications. Here's an overview of the key points covered in this guideline: 1. Introduction: The guideline begins with an introduction highlighting the increasing importance of lentiviral vectors in advanced therapies and the need for guidance on their development and manufacture. 2. Scope: It defines the scope of the guideline, which covers the development and manufacture of lentiviral vectors intended for use in gene therapy and cell therapy products for human use. 3. Quality and Characte...

Stem-Loop PCR for siRNA

 Stem-loop PCR is a method often used for detecting and quantifying small RNAs, such as siRNA or miRNA, which are typically difficult to amplify directly due to their short lengths. The method involves the design of a stem-loop reverse transcription (RT) primer, which enhances specificity and stability of the short RNA during the RT-PCR process, allowing for sensitive detection and quantification of the siRNA. Here’s a detailed guide to how stem-loop PCR can be applied to siRNA detection: Key Steps in Stem-Loop PCR for siRNA Designing the Stem-Loop RT Primer : Structure : The stem-loop RT primer consists of a loop region flanked by complementary sequences on either side (the "stem"), which will fold back on itself to form a hairpin structure. Specific Binding Region : A short sequence complementary to the 3’ end of the siRNA is added at the end of the stem-loop primer to ensure specific binding to the siRNA target. Stabilization : The loop structure helps prevent primer-dimer...

ICH Q5D Derivation and characterisation of cell substrates used for production of biotechnological/biological products (CPMP/ICH/294/95)

The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) provides guidelines to ensure the quality, safety, and efficacy of pharmaceutical products. ICH Q5D, as outlined in document CPMP/ICH/294/95, addresses the derivation and characterization of cell substrates used for the production of biotechnological and biological products. Below is a detailed elaboration of ICH Q5D: 1. Purpose of ICH Q5D: ICH Q5D provides guidelines for the establishment of cell substrates used in the production of biotechnological and biological products. The primary goal is to ensure the quality, safety, and consistency of cell substrates to minimize potential risks associated with the final product. 2. Cell Substrate Characterization: The guideline emphasizes the importance of thorough characterization of the cell substrate. This includes the origin of the cells, their history, and any relevant genetic information. Detailed documentation of the cell line...

Overview of Cut Point Calculation in the Presence of Pre-existing Antibodies

The process involves statistical methods that account for variations in baseline ADA levels across the study population. Here’s a structured approach to calculate the cut point when there is a pre-existing antibody response: 1. Collect Baseline ADA Samples Sample Population : Collect samples from a representative population of treatment-naïve subjects (typically 50-100 individuals). These baseline samples should reflect the typical range of pre-existing ADA levels within the target patient population. Matrix Type : Use serum or plasma samples, as appropriate for the assay matrix. Time Points : Ideally, collect multiple samples per subject pre-treatment to get a clear baseline. 2. Run Baseline Samples in ADA Assay Perform the ADA assay on all baseline samples, running each sample in triplicate to account for intra-assay variability. Record the response values (e.g., optical density (OD) in ELISA) for each sample. If using multiple replicates, calculate the mean response for each sample....