Skip to main content

ICH Topic Q5E Comparability of biotechnological/biological products (CPMP/ICH/5721/03)

 ICH Topic Q5E, as outlined in document CPMP/ICH/5721/03, deals with the comparability of biotechnological and biological products. This guideline provides a structured framework for assessing and ensuring the comparability of different product versions, including changes during development, manufacturing, or post-approval phases. The goal is to demonstrate that changes made to a product do not adversely affect its quality, safety, or efficacy. Here's an elaboration of ICH Q5E:


1. Purpose of ICH Q5E:

The primary purpose of ICH Q5E is to provide guidance on how to demonstrate the comparability of biotechnological and biological products, especially when changes are made to the manufacturing process or product characteristics. Comparability studies are crucial for ensuring the consistent quality and safety of these products.

2. Types of Changes Covered:

ICH Q5E covers a wide range of changes, including modifications to the manufacturing process, changes in the manufacturing site, alterations to the product formulation, and adjustments to the analytical methods used for product characterization.

3. Risk Assessment:

Before initiating comparability studies, a risk assessment should be conducted to identify potential risks associated with the proposed changes. The assessment should consider the impact of changes on product quality, safety, and efficacy.

4. Scientific Rationale:

A sound scientific rationale for the proposed changes is a key requirement. Manufacturers should provide a justification for why the changes are necessary and how they are expected to impact the product.

5. Analytical Characterization:

The guideline emphasizes the importance of comprehensive analytical characterization. The product before and after the proposed changes should be thoroughly analyzed to identify any differences in critical quality attributes (CQAs).

6. Comparability Protocols:

Comparability protocols should be developed to outline the strategy for the assessment. These protocols detail the study design, analytical methods, acceptance criteria, and statistical approaches used to evaluate comparability.

7. Extent of Comparability Testing:

The extent of comparability testing depends on the nature of the changes and the level of risk identified. It may include in vitro and in vivo studies, physicochemical analysis, and functional assays.

8. Stability Studies:

Stability studies are important for assessing the impact of changes on the product's shelf life and stability profile. The shelf life of the modified product should be supported by appropriate data.

9. Regulatory Considerations:

Manufacturers are encouraged to consult with regulatory authorities early in the process to discuss proposed changes and comparability study designs. Regulatory agencies play a role in reviewing and approving comparability assessments.

10. Post-Approval Changes:

- ICH Q5E also addresses post-approval changes. Manufacturers are required to notify regulatory authorities of certain changes and may need to perform comparability studies to support these changes.

11. Reporting and Documentation:

- Comprehensive documentation is crucial. Manufacturers must provide a detailed report summarizing the comparability study results, including any changes in CQAs, and demonstrate that the product remains safe and effective.


In summary, ICH Q5E provides a structured approach for assessing and ensuring the comparability of biotechnological and biological products when changes are made to their manufacturing processes or product characteristics. The guideline emphasizes the importance of scientific rationale, risk assessment, thorough analytical characterization, and rigorous comparability testing. Compliance with these guidelines is essential to maintain product quality and safety while allowing for necessary product improvements and changes

Popular posts from this blog

Ago2 Immunoprecipitation for RISC-siRNA Quantitation

 Ago2 (Argonaute 2) immunoprecipitation (IP) is a technique used to isolate RNA-induced silencing complexes (RISC) from cell lysates. This method allows for the specific enrichment of active RISC complexes bound to small interfering RNA (siRNA) or microRNA (miRNA) within cells. By isolating these complexes, researchers can then quantify the siRNA associated with Ago2, which is an essential step in determining the efficacy of RISC loading and siRNA activity. Here’s a detailed overview of how Ago2 immunoprecipitation is performed for RISC-siRNA quantitation: Steps in Ago2 Immunoprecipitation for RISC-siRNA Quantitation Cell Lysis and Preparation of Lysate : Sample Preparation : Collect cells that have been treated with siRNA, then wash them with cold phosphate-buffered saline (PBS) to remove extracellular contaminants. Lysis : Lyse the cells in a gentle, RNA-preserving lysis buffer that typically includes detergents (e.g., NP-40 or Triton X-100), protease inhibitors, and RNase inhibi...

Guideline on development and manufacture of lentiviral vectors (CHMP/BWP/2458/03)

The guideline with the reference number "CHMP/BWP/2458/03" pertains to the "Guideline on Development and Manufacture of Lentiviral Vectors." This guideline was developed by the Committee for Medicinal Products for Human Use (CHMP) and the Biotechnology Working Party (BWP) of the European Medicines Agency (EMA). It provides recommendations and regulatory guidance for the development and manufacture of lentiviral vectors, which are widely used in gene therapy and cell therapy applications. Here's an overview of the key points covered in this guideline: 1. Introduction: The guideline begins with an introduction highlighting the increasing importance of lentiviral vectors in advanced therapies and the need for guidance on their development and manufacture. 2. Scope: It defines the scope of the guideline, which covers the development and manufacture of lentiviral vectors intended for use in gene therapy and cell therapy products for human use. 3. Quality and Characte...

Stem-Loop PCR for siRNA

 Stem-loop PCR is a method often used for detecting and quantifying small RNAs, such as siRNA or miRNA, which are typically difficult to amplify directly due to their short lengths. The method involves the design of a stem-loop reverse transcription (RT) primer, which enhances specificity and stability of the short RNA during the RT-PCR process, allowing for sensitive detection and quantification of the siRNA. Here’s a detailed guide to how stem-loop PCR can be applied to siRNA detection: Key Steps in Stem-Loop PCR for siRNA Designing the Stem-Loop RT Primer : Structure : The stem-loop RT primer consists of a loop region flanked by complementary sequences on either side (the "stem"), which will fold back on itself to form a hairpin structure. Specific Binding Region : A short sequence complementary to the 3’ end of the siRNA is added at the end of the stem-loop primer to ensure specific binding to the siRNA target. Stabilization : The loop structure helps prevent primer-dimer...

FDA Guidance on Studying Multiple Versions of Cellular or Gene Therapy Products in Early-Phase Clinical Trials

 The purpose of this guidance is to offer advice to sponsors interested in conducting early-phase clinical trials for a single disease involving multiple variations of a cellular or gene therapy product. Sponsors aim to gather preliminary safety and efficacy data for these product variations within a single clinical trial. It's important to note that even though multiple product versions are studied together, each version is distinct and typically requires a separate investigational new drug application (IND) submission to the FDA. The primary goal of these early-phase clinical studies is to inform decisions about which product version(s) should be advanced for further development in later-phase trials. As such, these studies are not designed to provide the main evidence of effectiveness needed for a marketing application. They are generally not statistically powered to demonstrate a significant difference in efficacy between the different study arms. In this guidance, the FDA prov...

Stem loop RT-PCR for Detection of siRNA in Animal Tissues

Step Loop RT-PCR for Detection of Small Interfering RNA (siRNA) The recent publications described a novel used the novel method for the detection of siRNAs using a TaqMan®-based approach. This approach utilizes similar strategy that has been used for microRNA detection. The approach is illustrated in below.  In brief, the RT step occurs in the presence of a stem-loop RT primer that is complementary to the last 6–10 bases of the 3′ end of the antisense strand of the target siRNA. The stem-loop primer contains an additional universal sequence at the 5′ end that facilitates a TaqMan-based detection strategy in the subsequent qPCR step. As in the case of microRNA, the forward primer for qPCR is sequence-specific for the target siRNA. For sequence compositions that yield a low predicted melting temperature (Tm), the forward primer is designed as a tailed primer to help increase Tm. Stem Loop PCR for SiRNA Detection Step 1: Preparation of liver and plasma samples for the quanti...