Skip to main content

SOP on Investigational New Drug (IND) Application and Clinical Investigation Policy

Title: Investigational New Drug (IND) Application and Clinical Investigation Policy

Introduction and Purpose:

The conduct of clinical investigations (clinical trials) under an FDA-Regulated Investigational New Drug (IND) application involves compliance with a complex set of FDA regulations, requirements, and responsibilities. The FDA holds the IND application sponsor accountable for ensuring compliance with these regulations (21 CFR Part 312, Subpart D). While pharmaceutical companies are typical IND sponsors, individuals, governmental agencies, and academic institutions may also serve as sponsors (21 CFR Part 312.3).

This policy serves the following purposes:

  • To assist in determining when an IND is necessary.
  • To provide guidance and resources for individuals conducting clinical investigations, including sponsor-investigators, on obtaining an IND for the investigational drug.
  • To outline the process for compassionate use (expanded access) and emergency use of investigational drugs.

Definitions and Acronyms:

  • Biologic: A product, including vaccines and gene therapies, applicable to the prevention, treatment, or cure of human diseases. Most biologics are considered drugs by the FDA.
  • Botanical: A finished product containing plant matter, which may include plant materials, algae, fungi, or combinations thereof.
  • DEA: Drug Enforcement Administration
  • Drug: A substance recognized by an official pharmacopeia, intended for use in diagnosis, cure, mitigation, treatment, prevention of disease, or affecting the structure/function of the body.
  • Schedule 1 drugs: Substances with no accepted medical use in the United States, often associated with high risk of substance use disorder.
  • Emergency Use: The use of an investigational product under strict criteria on a single subject in a life-threatening situation when no standard treatment is available. It is not considered research.
  • Expanded Access: Also known as compassionate use, it allows a patient to receive an investigational drug outside of a clinical trial when enrollment is not possible.
  • Investigational New Drug (IND): A request submitted to the FDA to administer an investigational drug to humans, necessary before clinical trials.
  • Sponsor-Investigator: An individual initiating and conducting an investigation and directly administering or dispensing the investigational drug.
  • Supplement: A product intended to supplement the diet, including vitamins, minerals, herbs, amino acids, dietary substances, or concentrates.
  • CFR: Code of Federal Regulations
  • CRSO: Contract Research Support Office
  • FDA: United States Food and Drug Administration
  • IRB: Institutional Review Board
  • SOP: Standard Operating Procedure

IND Guidance:

IND Requirements:

  • U.S. regulations mandate an IND before conducting clinical studies of an investigational drug.
  • Investigational use covers unapproved products or approved products used beyond labeled indications.
  • An IND may be required when the primary intent is to develop safety or efficacy information.
  • Schedule 1 drug investigations also require DEA approval.
  • Clinical investigations of marketed drugs may be exempt from IND submission under specific conditions.

Pre-IND Meeting:

  • Sponsor-investigators may request a pre-IND meeting with the FDA.
  • While not obligatory, pre-IND meetings can help confirm IND requirements, ensure study design suitability, minimize clinical hold risks, control costs, and facilitate early FDA interactions.
  • Meetings are typically scheduled within 60 days of request receipt.

Initial IND Submission:

  • The sponsor-investigator is responsible for preparing and submitting the IND application to the FDA.
  • IND content varies but must include a complete protocol, informed consent, and investigational product details.
  • The FDA reviews the submission within 30 days and may request additional information.
  • Clinical study may commence after 30 days, barring FDA notification of clinical hold.

IRB Requirements:

  • The sponsor-investigator ensures IRB review and approval before initiating the study.
  • Proof of IND submission or waivers may be required by the IRB.
  • The Pre-IND Audit must be completed before IRB approval.

IND Amendment Requirements:

  • Protocol, investigator, site changes, and other amendments necessitate IND updates.
  • Informational amendments report non-protocol, non-safety information.
  • IND Safety Reports: Sponsor notifies FDA and investigators of serious, related, unexpected adverse experiences promptly.
  • Follow-up reports may provide additional information.
  • Non-serious adverse events are summarized in Annual Reports.

IND Annual Reports:

  • Due within 60 days of the IND anniversary date.
  • Include study summary and adverse event summaries.
  • Required even if the study has not begun.

IND Final Study Report:

  • Submitted upon study completion for IND closure.

IND Submission Documentation:

  • Maintain complete submission records per Clinical Research SOP, "Study Records Management."
  • FDA submission documents, responses, and correspondence are retained by the CRSO IND Specialist for studies using their services.

References:

  • 21 CFR Part 312: Investigational New Drug Application
  • 21 CFR Part 312, Subpart D: Responsibilities of Sponsors and Investigators
  • 21 CFR Part 312.3: Definitions and Interpretations
  • SOP: Study Records Management

Document Approval

Popular posts from this blog

Human Genome Editing: FDA Draft Guidance Summary

Consideration for Developing Gene Editing Product  1. Genome Editing Methods: Genome editing can be achieved through nuclease-dependent or nuclease-independent methods. Nuclease-dependent methods involve introducing site-specific breaks in DNA using technologies like zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), modified-homing endonucleases, and CRISPR-associated (Cas) nucleases. These breaks can lead to modification of the DNA sequence at the cleavage site. Nuclease-independent methods can change DNA sequences without cleaving the DNA and include techniques like base editing and synthetic triplex-forming peptide nucleic acids. The choice of GE technology should consider factors such as the mechanism of action, the ability to target specific DNA sequences, and the potential to optimize components for efficiency, specificity, or stability. 2. Type and Degree of Genomic Modification: Different GE approaches rely on DNA repair pathways such a...

Stem loop RT-PCR for Detection of siRNA in Animal Tissues

Step Loop RT-PCR for Detection of Small Interfering RNA (siRNA) The recent publications described a novel used the novel method for the detection of siRNAs using a TaqMan®-based approach. This approach utilizes similar strategy that has been used for microRNA detection. The approach is illustrated in below.  In brief, the RT step occurs in the presence of a stem-loop RT primer that is complementary to the last 6–10 bases of the 3′ end of the antisense strand of the target siRNA. The stem-loop primer contains an additional universal sequence at the 5′ end that facilitates a TaqMan-based detection strategy in the subsequent qPCR step. As in the case of microRNA, the forward primer for qPCR is sequence-specific for the target siRNA. For sequence compositions that yield a low predicted melting temperature (Tm), the forward primer is designed as a tailed primer to help increase Tm. Stem Loop PCR for SiRNA Detection Step 1: Preparation of liver and plasma samples for the quanti...

ICH Q8 (R2) Pharmaceutical development (CHMP/ICH/167068/04)

 ICH Q8 (R2) is a guideline titled "Pharmaceutical Development" (CHMP/ICH/167068/04). This guideline is part of the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) and provides recommendations for the pharmaceutical development of medicinal products. It offers a structured approach to the development of pharmaceutical products to ensure their quality, safety, and efficacy. Here's an elaboration of ICH Q8 (R2): 1. Purpose of ICH Q8 (R2): The primary purpose of ICH Q8 (R2) is to provide a systematic and science-based approach to pharmaceutical development. The guideline aims to facilitate the design and development of high-quality pharmaceutical products that meet the needs of patients and regulatory authorities. 2. Scope: ICH Q8 (R2) applies to the development of all types of pharmaceutical products, including small molecules, biotechnological products, and other complex medicinal products. 3. Pharmaceutical Develop...

Cell-Mediated Immunity in AAV Gene Therapy

Cell-mediated immunity (CMI) plays a significant role in the effectiveness and safety of AAV (Adeno-Associated Virus) gene therapy. Understanding the impact of CMI is crucial for optimizing therapeutic outcomes and managing potential adverse effects. Here’s a detailed overview of the impact of CMI on AAV gene therapy: 1. Mechanisms of Cell-Mediated Immunity in AAV Gene Therapy T-Cell Activation : After administration of an AAV vector, T cells can recognize the AAV capsid proteins or the transgene product as foreign antigens, leading to their activation. This can involve both CD4+ helper T cells and CD8+ cytotoxic T cells. Cytokine Production : Activated T cells produce cytokines (e.g., IFN-γ, TNF-α) that can enhance the immune response. These cytokines can influence the activation and proliferation of other immune cells, including B cells and macrophages. 2. Impact on Efficacy of AAV Gene Therapy Enhanced Antigen Presentation : CMI can improve the presentation of transgene-derived anti...

Preclinical Studies for AAV Gene Therapy

 Preclinical studies for AAV gene therapy are crucial to assess the safety, efficacy, biodistribution, and immunogenicity of the therapy before progressing to human trials. These studies help in understanding the potential risks and therapeutic effects in animal models, which is essential for regulatory approval to proceed to first-in-human studies. Here’s a breakdown of key preclinical study types and their objectives: 1. Efficacy Studies Objective : Determine whether the gene therapy delivers a therapeutic benefit in relevant disease models, such as improvement in phenotypic markers or functional outcomes. Study Design : Use disease-specific animal models that reflect the condition the therapy intends to treat (e.g., knockout models for genetic disorders). Evaluate therapeutic endpoints, such as protein expression, functional assays, or phenotypic changes. Example : For a neurological condition, measure motor function or cognitive outcomes in treated versus control groups. 2. Bio...